Equivariant Callias index theory via coarse geometry

نویسندگان

چکیده

The equivariant coarse index is well-understood and widely used for actions by discrete groups. We first extend the definition of this to general locally compact use a suitable notion admissible modules over C * -algebras continuous functions obtain meaningful index. Inspired work Roe, we then develop localised variant, with values in K-theory group -algebra. This generalises Baum–Connes assembly map non-cocompact actions. show that an Callias-type operators special case index, results on existence non-existence Riemannian metrics positive scalar curvature invariant under proper actions, version conjecture weaker than original conjecture, while still giving conceptual description

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An equivariant index formula in contact geometry

Given an elliptic action of a compact Lie group G on a co-oriented contact manifold (M, E) one obtains two naturally associated objects: A G-transversally elliptic operator Db / , and an equivariant differential form with generalized coefficients J (E, X) defined in terms of a choice of contact form on M . We explain how the form J (E, X) is natural with respect to the contact structure, and gi...

متن کامل

Coarse Geometry via Grothendieck Topologies

In the course of the last years several authors have studied index problems for open Riemannian manifolds. The abstract indices are elements in the K-theory of an associated C∗-algebra, which only depends on the ”coarse” (or large scale) geometry of the underlying metric space. In order to make these indices computable J.Roe introduced a new cohomology theory, called coarse cohomology, which is...

متن کامل

Genericity in Equivariant Dynamical Systems and Equivariant Fuller Index Theory

Contents Introduction 5 1 Genericity in Non-Equivariant Dynamical Systems 8 1.

متن کامل

Using Equivariant Obstruction Theory in Combinatorial Geometry

A significant group of problems coming from the realm of Combinatorial Geometry can only be approached through the use of Algebraic Topology. From the first such application to Kneser’s problem in 1978 by Lovász [13] through the solution of the Lovász conjecture [1], [8], many methods from Algebraic Topology have been used. Specifically, it appears that the understanding of equivariant theories...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Fourier

سال: 2022

ISSN: ['0373-0956', '1777-5310']

DOI: https://doi.org/10.5802/aif.3445